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Volumetric Transformation of Brain Anatomy
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Abstract—This paper presents diffeomorphic transformations variation. To accomplish this, we use tlgdobal shape models
of three-dimensional (3-D) anatomical image data of the macaque of Grenander [8] to represent the typical global structures

occipital lobe and whole brain cryosection imagery and of deep i, the shape ensemble via the construction of templates
brain structures in human brains as imaged via magnetic reso- !

nance imagery. These transformations are generated in a hierar- @nd their variabilities by the definition of probabilistic
chical manner, accommodating both global and local anatomical transformations applied to the templates. The transformations

detail. The initial low-dimensional registration is accomplished form mathematical groups made up of translations, scales, and
by constraining the transformation to be in a low-dimensional qtations and are applied locally throughout the continuum of

basis. The basis is defined by the Green’s function of the elasticity . . .
operator placed at predefined locations in the anatomy and the the template coordinate system so that a rich family of shapes

eigenfunctions of the elasticity operator. The high-dimensional May be generated with the global properties of the templates
large deformations are vector fields generated via the mismatch maintained. Such an approach provides a representation of

between the template and target-image volumes constrained to normal neuroanatomiesvhich precisely specifies the global
be the solution of a Navier-Stokes fluid model. As part of 4nai0mical relationships between structures as well as how

this procedure, the Jacobian of the transformation is tracked, th f brain t th Th h
insuring the generation of diffeomorphisms. It is shown that €Y ¢an vary irom one brain 1o another. The approac

transformations constrained by quadratic regularization methods taken herein complements the probabilistic atlas approach
such as the Laplacian, biharmonic, and linear elasticity models, developed in [9] and [10]. Our methods, however, focus on

do not ensure that the transformation maintains topology and, probabilistic measures associated with the transformations of
therefore, must only be used for coarse global registration. the coordinate systems of the atlases. This is central to the
Index Terms—Brain mapping, global shape models, medical Grenander paradigm in the pattern theory [8]. From measures
imaging, pattern theory. of the variation of the coordinate system transformations,
estimates on the variations of image intensities at particular

|. INTRODUCTION locations can be defined.

ODERN neuroimaging methods allow anatomists to P_rese_rvmg geom(_etrlcal properties and  topology dur_mg

. . . L . registration is a major thrust of our work. Such properties

provide exquisitely detailedn vivo information re- orrespond to topological properties of the transformation
garding the anatomical structure of individual brains. 6 P polog prop

date, the interpretation of the data has been hindered uiyc?heaiaggt;gzwt};h ddIgterzgrnstlai?rlgtyihisozlg(\jle-sveeﬂngigr?i;e
the inability to expeditiously relate such information betwee ” hi ' i ) i i ' d diff
morphologically varying brains. The difficulty lies in twoC" comorphic—continuous, one-10-one, onto, and diteren-

areas. First images between differing anatomies must be r ple—tran§form§tio_ns in this paper, Transformations that are
istered. Second, even when registered, normal variation acr omorphic maintain topology, guaranteeing that connected

disparate anatomies makes pooling of interanatomical d regions remain connected, neighborhood relationships
difficult, if not impossible. etween structures are preserved, and surfaces are mapped

For the past several years we have been involved in t}%surfaces. Preserving topology is important for synthesizing

development of mathematical and computational softwatiividualized electronic atlases; the knowledge base of
tools for the generation of structural representations of brdff€ atlas may be transferred to the target anatomy through
anatomy which accommodate normal neuroanatomical varf3€ topology preserving transformation providing automatic
tion. As we have demonstrated [1]-[7], such representatioff@€ling and segmentation. If total volume of a nucleus,
provide a structural understanding of the brain architectuféentricle, or cortical subregion are an important statistic
invariant to the shape variability inherent to normal braif ca@n be generated automatically. Topology preserving
anatomy. This is in a sense brain representatiodulo normal transformations that map the template to the target also can
be used to study the physical properties of the target anatomy,
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cortical structures, such as the thalamus, caudate, ventriclglebal and local shape variation between image volumes.

etc. and even some of the major sulci. However, this may Besults mapping both 3-D monkey and human anatomical

violated such as for various types of disease. Registrationigfage data are presented in Section Ill. The validity of the

regions with different topology is an area of current researamapping are evaluated by comparing the automatic segmenta-
There has already been a vast body of work aions generated by mapping the atlas to the target with hand

digital electronic atlases, multimodality image fusion andegmentations and directly by composing the forward and

registration. Digital atlases are currently available [12]nverse transformations.

especially for colocalization of volume datasets, such as

those encountered with positron emission tomography II. TRANSFORMATION MODELS

(PET)/single photon emission computed tomography

(SPECT), computed tomography (CT) and magnetic pathematical Preliminaries

resonance imaging (MRI) [13]-[16]. Suitable atlases support

neuromorphometric analyzes [17], with both colocalizatio

and neuromorphometric analysis requiring the availability

Populations of anatomies are studied by constructing maps
fom the population to a common coordinate system. For this,
volumetric image data with large numbers of voxel sample\é’,e associate with the _smg_le coordinate sy_stem an atlas, or

template denoted’, which is a set of/V-registered image

such as that provided by CT or MRI [9], [18]-[21]. " N ) .
The most straightforward methods of registration assu 8lum%ST N {T"}_":l defined on the coordinate system
C ‘R*° corresponding to different interpretations of a single

that the images or tissues being matched are highly simifar . . . .
for which the variability of only global course features ar nderlying object of interest. FOF example, the imagk<can
accommodated via affine transformations [11], [21], [22]. W&orres_,pond to both sensor readings such as CT a_nd MRI and
however, are interested in accounting for very local variabili logical data s_uc_h as structure names am_j functlons._
across disparate anatomies, thereby requiring high-dimensionaThe target or md'V'dljj\?l n th_e population |s_cr_1aracter|zed
transformations on the coordinate system, the dimension ‘Of astqu_S = {Sm}m=y defined onQ consisting ofM- :
which are proportional to the number of voxels in the volumé! ara.cter.|2|ng data sets, or ;ub.stud|es'. Each Sl.JbStUdy IS an
A number of investigators have taken the approach in whi Xamlnf':ltlon of the target brain tissue via a sensing mOda.lI.'ty
the mapping is based on geometric features, such as landm Qé is in the atlas. In general, the atlas has more mod_alltles
(points) [23], [9] and contours (lines) [24]-[30]. Alternatively, an the studyM_ <N becausd_‘ usually con_talns more h-
others have investigated volume mapping which use the ir!E—rm"’.lt'on tha_nS‘, €., segmentation and labeling .Of structures.
age data directly to generate transformations throughout t Ige mformapon in the atlas and ta_rge.t coordinate syste_ms
coordinate system of the template and target [14], [15], [3 re brought mFo cqrrespondence by}\f;ndmg the transformation
The voxel image data provide the matching forces througho & ]'\_> {2 registering t_hq SAY S s W'th the template
the continuum. In our work (see [32]), both approaches ntn=t: Throu_ghout itis assgmed thai) is constructed

. X i : rom a vector field o2 according to
combined via a composition of transformations. The transfor-
mations are of high dimension, applied as if the template were h:x = (1,72, 73) — h(z) = (21,20, T3)
a fluid, allowing for the examination of fine features within
the continuum of the templates and targets: e.g., cortical folds, ~ (@), w2 (@), uala) @)
sulcal trajectories, deep nuclei, and ventricular volumes awngth the vector fieldu(x) = (u(z), u2(x), us(z)) parameter-
shapes. The transformations on the continuum are tracked #ifg the transformation of coordinate systems.
forced to be diffeomorphisms so that all differential geometric Registration is defined using distance measupgs) be-
features can be mathematically characterized and measuragen the transformed atlas and study which are derived from
On the one hand the 20 million parameter transformatiotise physics of the sensor. We have used Gaussian distance
are rich enough to map the finest anatomical details; on theasures which are appropriate for cryosection and MRI data
other hand, they maintain topology allowing for semantic arf@4]-[37] and Poisson based distance measures which are
geometric features to be mapped. Others have investigaggpropriate for PET and SPECT data [38]-[41] [emission
decomposing two-dimensional (2-D) and 3-D nonrigid transemographs, charge-coupled device (CCD) cameras]. For the
formations into separate one-dimensional (1-D) problems [38Jata presented here the Gaussian distance for one modality
Although 1-D transformations are computationally efficientvas used:D(h) = [ [T(h(z)) — S(z)|?dz. In a Bayesian
2-D and 3-D transformations constructed from decoupled 1{fEamework, the distance measure f¥rmodalities is additive
transformations still require the reinsertion of the diffeomorb(h) = XX, w;D;(h) assuming independence between
phic constraint upon their synthesis to three dimensions. modalities conditioned on the coordinate transformatio()

The paper is organized as follows. Section Il describes tlethe potential energy of the product of independent proba-
coarse-to-fine approach used to transform the shape of kility densities, the distance measurBs are specific to the
electronic atlas so that it matches the shape of a specifitaging modality:, and the weightay; are associated with
individual's anatomy as imaged via cryosection and MReach measurement modality.

Continuum mechanical models based on linear elasticity andTo ensure diffeomorphic properties, the transformafias
fluidity are used to ensure that the high-dimensional transstimated which minimizes the distance measiXé) while
formations preserve topology. These models are concatenadedhe same time satisfyindiffeomorphic constraintsThese
together in the coarse-to-fine procedure for accommodatidiffeomorphic constraints are enforced on the transformdtion
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by constraining the transformation to satisfy the laws of contin- 1) Landmark Transformation Model: Generating Initial Con-
uum mechanics [42]. The variational problem which is solveditions: The first step in the coarse-to-fine procedure trans-
is to find the maximum a-posteriori estimators associated witbrms the template into the shape of the target by registering
h = argmax;,(—D(h) — H(h)) where H(h) is the energy a set of landmarks in the template with a corresponding set
representation of the regularization on the transformation. of landmarks in the target. The transformation is constrained
by a generalized linear differential operatbrwhich can be
adjusted to correspond to Laplacian, biharmonic (thin-plate
B. Hierarchical 3-D Brain Mapping Protocol splines), linear elasticity, and other continuum mechanical

Since 3-D brains are tremendously complex, we have cdfiansformation models.
structed a hierarchical protocol which proceeds from course-The affine groupGL(3) © R* (semi-direct product of the
to-fine for the generation of the diffeomorphic maps. Thiganslation and generalized linear group) is studied separately
protocol has two fundamental pieces, the first poses tfiem the landmark and image matching transformations. The
registration problem in terms of a series expansion and tfgmplate is defined to carry the affine motions with it and
second in terms of solving a partial differential equation (PDEUS is an orbit, i.e., the equivalence class under the affine
on a spatial grid with dimension on the order of the imag@roup. The affine motioQA, r), which is specified by the 83
lattice (number of voxels). The series expansion involves tavertible matrixA and 3x 1 translation vector, is estimated
series, the first a series which is localized over the input lan@hich chooses from the template orbit the instance which
marks corresponding to the Green'’s functions of the elasticify closest to the target. The affine motion accommodates the
operator and the second a global basis in sines and cosi@igbal scale, rotation, and translation, while the other landmark
corresponding to eigenfunctions of the elasticity operator. motions match the globally scaled and oriented template to

The landmark series expansion is based on a natural & target. Throughout, we interpret the maps and elements as
tension of Bookstein’s landmark work [23], [43] in whichvectors inR3, so that matrix multiplication is understood in
corresponding points, lines, surfaces, and subvolumes in the usual sense. The affine motig#, 7) and local vector field
template and target are used to drive the deformation. Laftansformatiom(z) = = —u(x) are estimated jointly from the
marks can be identified manually or automatically. This stépndmarks.
provides an initial global or coarse registration bringing into Define{y; € ©,:=1,2,..., N} to be the set of landmarks
alignment the major subvolumes and areas of interest. TiHethe template, identified with varying degrees of accuracy.
volume basis series expansion is used to refine the landmAggociate with each landmark in the template a point;
series solution and differs from the landmark expansion in thigentified in the target. Assume that the identification of the
the volume data itself is used to drive the deformation. The vdoints ; is noisy and is modeled by; — u(z;) = Ay; +
ume basis expansion provides a coarse linear-elastic alignntert 7(y:),¢ = 1--- N, wheren(y;) are Gaussian distributed
of the volume for regions in between landmarks. Fine loc#iith & 3x 3 covariance};. The covarianc&; represents the
alignment is accomplished by solving the registration prob|eﬁpatia| variability associated with identifying the landmarks in
posed as the solution of a fluid partial differential equation ontBe data. For the results presented in this paper= o;1,
spatial lattice of displacement vectors. The fluid transformatigvhere [ is the 3x 3 identity matrix.
is composed with the small deformation series transformationThe transformation is estimated using the landmark infor-
and may be viewed as using the series expansion solutidation according to the Bayesian optimization [32], [44]
as its initial condition. We are currently extending the fluid N
formulation so that it incorporates large deformation theory ,,o iy / ||Lu||? + Z [Ayi +7 = (wi —w(z:)] St
into the landmark solution [44]. wAr  JQ =1

The registrations generated involve several steps organized . [Ay, + ¢ — (z; — u(x;))]. )
through three basic transformations which are compased,
hy 0 h,_1 0---. The first transformatiork, applies the affine For all of the landmark work, we take = —aV2—bVV-+cl
motions for choosing the best positioning of the templatgith & = 0. The solution becomes
and global scale; subsequent transformations increasing in N
dimension are the landmark transformations, along with the (z) = Z K(z, 2B
high-dimensional “small deformation elasticity” and “large et
deformation fluid transformation.” During these transforma-
tions the dimension of the vector fields are increased. InitiafyhereX (z,y) is defined by the matrix shown at the bottom of
the affine motions are of dimension 12, increasing to tiBe nextpaged; = [}, 57, 57]° € R® are the weights vectors,
order of 500 landmarks corresponding to the anterior aR@id« = \/a/c. The optimal weights? = 4, -+, Bv]" and
posterior commissure lines (Tailarach-like orientation) and tfilee affine motior( A, 7) satisfies the system of linear equations
extrenal curves corresponding to the fundi, and finally the
PDE-based transformation consisting of200° dimensions.
We are currently extending the landmark based transformation
based on small deformation energetics to the fluid formulation
to incorporate large deformation diffeomorphic transformation Z Biy: =0, Z £;i=0, i=1,---,N. 4)

for image registration [44]. i i

N
x; — Z K(zi,x;)B; = Xif3s | = Ay +7 3)
j=1
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The parametersd,r, and 3; are determined by solving with eigenvalues:y ; ;. = 72(a + b)(i® + j* + k%) + c and
the system of linear equations in (3), (4), accomplished By ; ; » = Ks,i ;1 = 72a(i®+;j%+k?)+c and normalizing coef-
inverting the system matrix. ficients oy i = /8/(42 + j2 + k%), g iji = /8/(i% + j2),

The procedure to register corresponding curves such as seed os ;5 = \/8/(i2 +52)(i2 + 52 + k2).
in the template and target is done in a similar manner. Curveswe have also investigated other boundary conditions for the

are drawn in the data and approximated using a piecewig@del corresponding to fixed, sliding, bending, and periodic
linear model, assumed to have equal number of equally spagesindary conditions [45].

nodes{y;: y; € Q,i =1,---,N}. The nodes of the template The variational problem becomes
curve are then matched to the corresponding nodes of the target
curve. i = arg min ~y / |T(z —u(z)) — S(z)|* dx
2) Volume Basis Transformation ModeThe second step u Q
uses a volume basis transformation model [2], [3], in which : N
the coordinate system of the atlas is transformed as an elastic +/ LPul? + ) [Ayi + 7 = (20 — u(z:))]'
solid so that it matches the shape of the study. The stress or & =1
restoring force grows proportionately to the strain or deforma- - Ay + = (w0 — u(m)] (7

tion distance away from the template. One limitation of this ) o )
model is that it is only valid for small linear deformations'/nere the displacement fieidis constrained to be of the form

Defining the transformation via the vector field according to d N

h(z) = x—u(x), the strain field:(x) for linear elasticity under u(zx) = Z () + Z BiK () (8)
the small deformation assumption corresponds to energetics of =0 im1

the form H(u) = ||LPu||* whereL = —aV%—-bVV-+cl, and

(VV-)u = V(V-u). We use thédendingboundary conditions with the variables{g;}, A, and r fixed from the landmark
transformationsy is a constant multiplying the distance mea-

sure D(h) and is used to adjust relative weight of this term

i (w1,0,5) =1, 1,5) = (w1, 22, 0) with the energetic constraint terms. The basis functighs: }

=uy(z1,72,1) =0 are the eigenelements of the operaliol.¢ = r¢ correspond-
Oui(0, 3, 3)  Oui(l,72,23) 0 ing to linear elasticity. Note that various operators can be
dx1 N dx1 N used for the landmark and the volume basis transformation
w2(0, 2, x3) =ua(l,x2,23) = u2(z1,22,0) models. We also note that (8) is valid as a small deformation
=ug(z1,22,1) =0 a_tpproximation. _Therefore, it is eql_JivaIent to_ _composi_ng the

Aus(w1,0,23)  dus(wy, 1, a3) first transformation of landmarks, with the additive elasticity

basis hs.
The optimization is accomplished by solving a sequence of
optimization problems from coarse to fine scale via estimation

8372 8372
u3(0, x2, #3) =u3(l,x2,23) = uz(x1,0,x3)

=us(z1,1,23) =0 of the basis coefficient§;; }. This is analogous to multigrid
Oduz(r1,72,0) _ Oduz(r1,72,0) -0 5) methods, but here the notion of refinement from coarse to fine
drs drs ) is accomplished by increasing the number of basis compo-
nents. As the number of basis functions is increased, smaller
The eigenvectors for these boundary conditions are and smaller variabilities between the template and target are
accommodated. The basis coefficiefyts, } are determined by
$1ij1(x) =0 ijx[i cos ixy sin jrosin kas, gradient decentué""’l) = ugtn) —A(OH (u™)|S)/dm.), where
7sin ¢xq cos jxosin kxs, 8H(u("))
k sin iz sin jx2 cos kazg]T Tbk == /Q (I(z - “(n)(x)) - S(x))
$2,i3k(2) = v2,4jk[= cos dzysin jz sin ’msz VT (z —u™ (@) - i) do + 122 pl™
¢ sin iz cos jxosin kxs, 0] d N
¢3,i56(2) =g k[tk cos iz sin jxosin ks, u(")(a:) = Z ugtn)d)k (z) + Z BiK(z,z;) 9)
jksin iz1 cos jrosin kxs, k=0 i=1
—(4% 4 j%)sin iz sin jzo cos kxs]? (6) with A a fixed step size.
202m)° eyl 0 0
“ /
K(z,y) = 0 22077 il 0
&
0 0 2212 eyl
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(@) (b) ©

(d) (e) ®

Fig. 1. Three—dimensional transformation of macaque monkey brain hemispheres: 3-D surface rendering of the left hemisphere of the (a) template,
(b) the transformed template, and (c) the target image volumes. Cryosection data slice 26 from the (d) template, (e) transformed template, and (f)
the target image volumes.

3) The Viscous Fluid Transformation ModeThe viscous successive overrelaxation (SOR) [46] with checkerboard up-
fluid transformation model [7] accommodates large-distancdgte at each fixed time step. The discrete version of (10) is
nonlinear deformations of the template. For this, an augiven by
iliary random field is introduced, termed the velocity field -
v(z,t),z € Q,t € [0,T], which defines the strain vector field @, +2) = u(x, ) + Al = Vu(z, 1))  v(z,t).  (12)

M) = @ = u(z,T) according to Automatic regridding is performed as in [7] and [47], by prop-

du(z,t)  du(z,t) (10) agating templates as the nonlinear transformations evaluated
a0t on the finite spatial lattice become singular. New templates
for ¢ € [0,7]. are propagated when the Jacobian of the transformation of the

For viscous fluids, the stress grows proportionately to tf&irent template drops below 0.5.
rate of straindu/dt and forces the mapping to be continuous, _
1-1, and onto [7]. Large distance strain distance deformatiofs Small Versus Large Deformation Models

will occur as long as the rate of strain during the mapping pue to the complex shape of anatomical structures, it is
is smooth. The PDE corresponding to the solution of thgportant that global structures are registered before local
variational problem for the fluid formulation is given by structures to avoid local mismatches. With this in mind, the
aV2u(z,t) + V(Y - u(x, 1) = bz — u(z, 1)) (11) hierarchigal mapping protocol progresses from smal! to large
deformation models. The small deformation constraints used
with the boundary conditions(z,t) =0, x € 9, andt€[0,T]. in the landmark and volume basis models are only valid for
The coefficientse and 3 are viscosity constants. small deformations. Small deformation models do not enforce
The PDE in (11) is nonlinear if? x [0,7] and is solved that the transformation maintains topology for locally large,
via N linear PDE’s in(} for fixed timest = nA where nonlinear deformations and, hence, are only used to determine
n=20,--,N—1landA = T/(N —1). The linear PDE’s nonrigid global correspondence. In order to determine the local
corresponds to (11) with andu(x, t) fixed and are solved in correspondence, the large-deformation, viscous fluid model is
sequence starting at=0 and«(z,t =0) = 0. These PDE’s used which is valid for locally large, nonlinear deformations
are solved numerically for the instantaneous veloeitysing [7].

vz, t) = + (Vu(z, 1)) v(z, t)



CHRISTENSENet al. VOLUMETRIC TRANSFORMATION OF BRAIN ANATOMY 869

The following proposition states formally that small defor- Squared Error vs. lteration
mation models such as the Laplacign=c = 0 andp = 1), 220 T r " T
biharmonic(b = ¢ = 0 andp = 2), and linear elasticity models 200

(b,c > 0 andp > 1) do not enforce that transformations _
maintain topology for locally large, nonlinear deformationss
Probabilistic language is used for rigor and because of th‘c_é
duality between minimizing cost functions and maximizing> 140
probability. 120

100

180
160

Proposition 1: Consider transformations of the fortfz) =

Squared Erro

z —u(z),ulx) = Xy mei(x), for x € Q = [0,1]™,m € 80

{17 27 3}7 de {17 o } Where¢1($), ¢2($)7 T 7¢d($) are the 60

eigenfunctions of the linear operatd?®,p ¢ {1,---} and 40

L = —aV? — bVV . +cI with cyclic boundary conditions 20 ) . . .

and a, b, c are positive constants. There exists a set of basis 0 -~ 50 100 150 200 250
coefficients i1, jua, - - -, tg With positive Gaussian measure Iteration

such that the Jacobian éfz) is negative for a set of with  Fig. 2. Piot of the squared errox(0°) versus iteration for the transforma-
positive Lebesgue measure. tions of individual A to B and B to A.

For brevity, we only prove the 1-D case. The formal
proof for higher dimensions is given in technical reports
[48], [45]. For m = 1, the operatorL has the formL =
—(a+ b)(8?/92%) + c. The operato.? will have eigenfunc-
tions of the formsin wiz and cos wix. For simplicity, we
proceed with only thep,(z) = sin iz case. The Jacobian
of this transformation is given by/(h(z)) = 8h/dz =
1 — 3¢ o imp,; cos miz. We now look atz = 0.5. Clearly,
there is a set{y;} with positive Gaussian measure, suct
that the Jacobian of at + = 0.5 is negative, i.e., there
is a set{u;} with positive Gaussian measure that satisfie
¥4 o aipi > 1 where a; = im cos(ri/2) are constants.
The set ofz for which J(h(z)) < 0 has positive Lebesgue
measure because is a continuous function of, i.e., there
exists an epsilon neighborhood abaut= 0.5 for which
J(h(z)) < 0. Q.ED.

Proposition 1 relates to the regularization functions in (2
and (7) in that the minimizer of,, ||LPu||? is equivalent to
the maximuma priori estimate ofu given p(u).

@

I1l. RESULTS

A. Example of Hierarchical Mapping Protocol

To illustrate the overall method of solution, Fig. 1 shows re
sults using cryosectioned data collected from macaque monk
brain hemispheres. The mapping strategy proceeds by initia
matching global structures followed by the finest detaile
mapping of the local structures. The final transformation we
generated by concatenating a sulcal line transformation, with
low-frequency, linear-elastic volume basis transformation, fol
lowed by a fluid transformation. Eight sulcal lines were define
in the template and target using VoxelView corresponding t
major brain sulci. Each line was parameterized by an ordert
set of points. These points (84 total) were matched using (2)
generate the initial global registration. The landmark transfor- (b)
mation was refined using an elastic transformation constrained . .

. . . .. . Fig. 3. Photograph of the right hemisphere of a macaque monkey used for
to the first five harmonics. Constraining the elastic transformgz’ ) template and (b) target. Arrows show the cuts that were made to
tion to the first five harmonics generated a transformation witémove part of the visual cortex.
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@ (b) (© (d)

Jd
Ht

Fig. 4. Parasagittal cryosection occipital cortex slices from the transformation of one 3-D macaque monkey occipital lobe to another: The @olumns fr
left-to-right correspond to slices 23, 37, 52, and 61, respectively. (a)—(d) template, (e)—(h) deformed template, (i)—(I) target data se{parioe(riy+
projection of the displacement field applied to a 2-D grid.

648 basis coefficients (parameters). This solution was refineguations such as (11). The 3-D fluid transformation takes
by solving the PDE 10, 11 with 500 iterations. The transformedughly 2 h for a 128 128x 100 voxel data set, 100 SOR
template is depicted in the right column of Fig. 1. Thigterations, and 250 time steps [47].
transformation was parameterized by one displacement vectomrhe solution of the nonlinear fluid PDE (11) is iterative.
and velocity vector at each voxel location which translates inkig. 2 shows a plot of the squared difference of the intensities
5.8x 10° parameters for the fluid transformation. Notice thaif the deformed template and the target versus number of
this multiresolution procedure generate a transformation imaigerations for the transformation of two 128128 x 100 voxel
volume that matched both the target macaque brain surfataa sets. The number of iterations used to compute the
topography and its internal structure. As proven in [7] theseD fluid transformation was selected to give a good match
maps from the fluid PDE are diffeomorphisms. between the template and target images, i.e. small squared
The PDE was implemented on the massively paralletror. Notice that most of the registration occurs in the first
DECmpp 12000Sx/Model 200 (MasPar), a 22828 mesh- 100 iterations of the total 250 iterations generated. This
connected single-instruction-multiple-data (SIMD) architecsuggests that computation time can be reduced by accepting
ture which is well suited for solving partial differentialless precision.
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() (b) (©) (d)

(e) ® ()

Fig. 5. Intermediate results of the 3-D macaque monkey occipital lobe transformation: Slice 37 from (a) initial template, (b) template afteathen@ist p
sulcal transformation, (c) template after the 40" parameter fluid transformation, and (d) the target volume. (e)—(g) Show the magnitude difference
images between the target slice and the template after each stage of the transformation.

B. Volume Segmentations and Geometry Fig. 4 shows four slices of the visual occipital lobe of
Generated from Smooth Maps cortex of the template before and after the 3-D hierarchical
transformation and the target data set. The bottom row of this
: . : . . gure shows the transformation applied to a rectangular’grid.
putation of meaningful differential geometric features, su otice how similar these images appear despite the great initial

as volumes an.d surfages to be preserved and measured.dWSrence between the template and target. We have chosen
demonstrate this by taking a more careful look at the neocortgi. o 1oy slices to illustrate major sites of differences in
in a subsection ponglstlng of the occipital subvolume of tl}fnatomy. Notice how many of them are topologically different
full macaque brain. Fig. 3 shows a photograph of the macaqgifien, viewed in 2-D, but since the algorithm works completely
cortex used for the atlas [Fig 3(a)] and the target [Fig 3(b)] Wit 3.p it moves the folds and surfaces around so as to make
arrows denoting the block of brain tissue used. This digitgdeyy match.
imagery of the occipital lobe was generated in D. Van Essen’sag the template volume deforms in three dimensions into
laboratory of the Department of Anatomy and Neurobiologihe shape of the target volume, each arbitrary cut through the
at Washington University, St. Louis, MO, by block microtomejeforming template begins to look more and more like the
cryosectioning and CCD digitization of 1Q@n sections. corresponding cut in the target volume. Fig. 5 illustrates this
The ice surrounding the brain tissue was removed by hapgprovement as the template deforms into the shape of the
tracing and masking of the brain exterior. The dimensia@rget volume after each stage of the transformation procedure
of the template and target data sets were 3280x 64 for slice 37 in the target anatomy. Slice 37 of the template is
and 320x 240x 54, respectively. These volumes were syminitially very different from the target slice 37 as illustrated by
metrically padded with zeros (the background intensity) e magnitude difference image. The sulcal line transformation
generate equal 320240x 74 volumes. The target volumeaccommodates the global nonrigid alignment as shown by
was preprocessed by histogram matching its histogram to tBlite 37 of the template after the sulcal line transformed and
of the template volume. the reduced magnitude difference image. Finally, the fluid
Global registration of the two data sets was accomplish&@nsformation accommodates the local shape differences and
by matching nine major, hand-labeled sulci in the atlas ats the smallest difference image.
the target. This transformation was refined to accommodateThe automatic segmentation of the target data set was
local variation using the 3-D viscous fluid model to producgenerated by mapping the atlas segmentation to the tar-
the final transformation. The sulcal line information provideget coordinate system. Fig. 6 shows sections from the atlas
initial conditions to the fluid solution; for the fluid model[Fig. 6(a)-(d)], the automatic segmentation of the target data
only the volume data provides the driving function. Thereforget [Fig. 6(e)—(h)], and an expert hand segmentation of the
hand-labeled sulcal lines could be drawn fairly quickly. The . o )
.. . . . The deformed grid images were generated by projecting the transformation
coefficients used for this experiment in (11) were= 0.01 for these slices to the-y plane producing a 2-D transformation. This 2-D
and 3 = 0.01. transformation was then applied to a 2-D image of a rectangular grid.

Generation of the diffeomorphic maps supports the co
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(m)

(n)

(0) (p)

Fig. 6. Automated 3-D segmentation of occipital cortex volumes. The columns from left-to-right correspond to slices 23, 37, 52, and 61, regppdiiely
template gray/white matter hand segmentation, (e)—(h) automatic segmentation of the target occipital lobe generated by transforming thegtaemtatien,
and (i)—(I) hand segmentation of the target data set, (m)—(p) gray/white matter surface of the deformed atlas overlaid on the study cryosectioned dat

TABLE |
SEGMENTATION CORRESPONDENCE OHNTERIOR POINTS (SEGMENTATION LABELS
>1 VOXEL FROM A BOUNDARY) FOR THE 3-D MACAQUE OccIPITAL LoBE Stuby

Structure

Before After Sulcal Line] After Fluid
Transformation]| Transformation |Transformation
percentage percentage percentage
background 95.2 97.5 99.9
gray matter 48.6 73.9 94.1
white matter 36.1 66.3 91.8

It has been shown that segmentation reliability for experts
is only valid for points interior to object boundaries [49],
[50] (see Fig. 11). To quantify precision of the segmentation
protocol, we compute the segmentation correspondence for
points interior to object boundaries. Interior points are defined
as a template segmentation labels that are one voxel from the
object boundary. The segmentation correspondence for interior
points is the percentage of correctly transformed interior points
to the total number of interior points for each segmented

target data set [Fig. 6(i)—(I)]. Comparison of the Fig. 6(e)—(t9bject. This measure takes into account the uncertain nature of
and Fig. 6(i)—(I) shows that the automatic segmentation $¢gmentation boundaries by using segmentation labels interior
close in shape to the hand segmentation. This is furthier objects.

supported by [Fig. 6(m)—(p)] which shows the gray/white Table | shows the interior point correspondence for the
matter surface superimposed on the target data set.

automatic segmentation of the visual cortex. The left column
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@) (b) (©
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Fig. 7. Three-dimensional rendering of macaque monkey occipital lobe transformation: Volume rendering cut at slice 53 of the (a) templatg, i) targe
(c) deformed template. Three-dimensional surface renderings of the gray/white matter surface of the (d) template, (e) target, and (f) deflateed temp

shows the correspondence before transformation, the midtdenplate to the target, and then rendering the surface in the
column shows the correspondence after the 3-D sulcal meqgrtical subvolume under the transformation.
solution (the nonrigid global alignment), and the right column
shows the correspondence after the fluid solution (the global
and local alignment). The top row of the Table | demonstratés Results for Human Brain Mapping: Hippocampus Matching
the background correspondence of the template and studyve have developed the algorithm to accommodate not only
increased from 95.2-99.9 under the transformation. This imryosection data, but also MRI data such as spin density, T1,
plies that the deformed template and study volumes only varg, and MPRAGE sequences. We have mapped several 3-
slightly in their over all shapes to give the 99.9 correspondenpe whole brains as imaged via MRI with the intention of
of the background. Correspondence for the gray matter agWddying the shape and volume of deep structures such as
white matter regions increased from about 35-50% initialihe hippocampus. Shown in Fig. 8 are the results of mapping
to about 65-75% after the sulcal transformation to nearhh entire MPRAGE volume from a single template to two
90-95% after the fluid transformation. different individual targets. The middle column shows the two
Table | also demonstrates the importance of the highifferent targets (top and bottom rows). The right panel shows
dimensional mapping solution. The middle column showthe template mapped to the target. This solution involved
the alignment for a 200-parameter transformation, whiadhe computation of 128 128x 100x 3~ 5 x 10° parameters
includes the 12-dimensional affine transformation. Even 208presenting the coordinate system transformation. We have
dimensions are not sufficient for providing precise localurface rendered the volume data so that the faces are apparent.
alignment of the cortical geography. The right colummotice the phenomenal similarity of the template and target
demonstrates the added accuracy of the resulting higbempare middle and right panels).
dimensional maps. We emphasize that the solution does not involve mapping
We have emphasized that the maps which are generatied surfaces alone. Rather, the mapping is based on the
are diffeomorphic, implying all differential geometric featuregntire volume of the heads, which of course carries the
are maintained. Fig. 7 shows the 3-D volume rendering of tkarfaces along with internal structures. Our purpose is to
template (left), the target (middle), and the final transformatiatudy the shape of deep structures such as the hippocampus.
of the template (right). The bottom row shows views of th&o emphasize this, Fig. 9 shows two sections from the 3-
gray/white matter neocortical surface being mapped from tRetemplate at its original resolution 31 x 1.25 mn? (left
template macaque (left column) occipital cortex volume to thelumn) and at its interpolated resolution of G2mm?,
target (middle column). The transformation of the templatecusing in on the hippocampus. The segmentation of the
surface is shown in the right column. The right column showsmplate hippocampus was performed by a trained expert at
the result of mapping the full occipital cortex volume from th€@.12% mm? resolution requiring upwards of 20 h to generate.
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@) (b) (©

(© (d)

(d) (e) 0]

Fig. 8. Three-dimensional MRI-MPRAGE head matching. Surface rende
ing of the MPRAGE (a) template, (b) target data sets, and (c) 3-D fluic
deformation of the template to the target; (d)—(f) same as (a)—(c) for seco
individual.

This segmentation has a smooth surface so that when ¢t
template transformation is applied to the segmentation,
generates a smooth segmentation.
The first step was to perform a landmark transformatiolffs 5
on the entire MRI volume (256 256x 128 voxel volume, () )
with voxel dlmensmn T 1x ?"25 mrﬁ)’)' The Iandmarl_(s W_er_e Fig. 9. Sagittal cross section of MRI hippocampus template: (a) and (b) two
selected to give a coarse alignment of the head while givingi@es of the MRI template where the hippocampus subvolume is shown in the
good match in the subregion containing the hippocampus. Tiee box; (c) and (d) the hippocampus subregion from (a) and (b) interpolated
landmarks used consisted of the anterior commissure (AC) g 2%, " [esolten rspectiel (€ 4 () same a2 0 a0 ®) wit,
posterior commissure (PC), the front and back of the brafippocampus.
on the line defined by the AC-PC line, the top, bottom, left,

and right of the brain in the plane perpendicular to the AC- h i th . he ed .
PC line containing PC, the head and tail of the hippocampd:g,t e error in the segmentation occurs at the edges. Fig. 11

and the top, bottom, left, and right of the hippocampus in tRg10Ws that the error in 2-D segmentation of a hippocampus
plane perpendicular to the hippocampus head and tail halfw@§FUrs at the boundaries [49]. .
between the head and tail. A 128128x 65 voxel region 1able Il shows a comparison between the automatic and
at 0.25 mm? was extracted from the landmark transformef@nual methods for segmenting the hippocampus in two
template. The subvolume was generated by transforming {irmal human subjects. The repeated automatic segmentations
template at 0.25mn® resolution and not by trilinearly inter- Were generated by placing new landmarks in the target image
polating the 1x 1 x 1.25 mn?# deformed image volume. TheVolume. Percent differences were computed by taking twice
template subvolume was fluidly transformed into the targHte difference between two numbers and dividing by the sum
subvolume using 300 iterations of the fluid algorithm. Fig. 10f the two numbers. Notice that there is agreement between
shows two slices from the original MRI target hippocampugpeated manual segmentations and the repeated automatic
volume (left column), a superimposed segmentation generag&gmentations. These results are significant considering that
by deforming the template to the target (middle-left columnjhe hippocampus is a difficult structure to segment because
a superimposed hand segmentation (middle-right column), asmall errors in segmenting the boundary cause large relative
a difference image of the two segmentations. Notice that alirors in the over all volume [50].
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@ (b) (© (d)

(e) ® () (h)

Fig. 10. Comparison of automatic and hand segmentation of hippocampus: Two slices frormOr#5resolution target image subvolume (a) and (e)
original, (b) and (f) original with deformed template segmentation superimposed, (c) and (g) original with hand segmentation superimposeaindnd (d)
(h) difference image between the automatic and hand segmentations.

TABLE 1
COMPARISON OF AUTOMATIC AND MANUAL METHODS FOR HIPPOCAMPAL SEGMENTATION

Subject|Auto-1|Auto-2{% Difference{Man-1|Man-2|% Difference Diff Between

‘ Mean of Man and Auto
N1 2842 | 2849 0.2 2804 | 3060 8.7 3.0

N2 2825 | 2922 3.4 2660 | 2653 0.3 7.8

Precision of the algorithms was evaluated by composing t'
forward and backward transformations together and measur
the deviation from the identity transformation (see Table Il 100
If the forward and backward transformations are inverses {'\\
one another, the composition transformation would be tl N e
identity transformation. Two transformations,z and hp.4,
were generated by transforming MRI data set A to B ar 50 e
B to A, respectively. The MRI data used in this experimel
were originally 256x 256x 128 voxel volumes with voxel
dimension 1x 1 x 1.25 mn?. These volumes were trilinearly e
interpolated to have voxel dimension 2 rhrand symmet-
rically zero padded to form a volume of 128128x 100 @)
voxels. The tranSforma,‘tlonslwere gen_erated by Con,(:atenatlg?gg. 11. (a) The average of four independent segmentations of a 2-D
an elastic transformation with the fluid transformation. Thghage of a hippocampus and (b) the superposition the contours of all four
elastic transformation was constrained to have harmonics upggmentations. Notice that most of the error in segmentation occurs at the
d = 3 and the fluid transformation was run for 250 iterationd°undarnes. Figure reproduced from Haleral, 1996.
Table Ill was constructed by projecting each displacement
vector from A to B and then from B to A. Each displacemerthat the transformations sz andh g4 are almost inverses of
vector from A to B was rounded to the nearest voxel locaticgach other. Aimost 100% of the voxels are mapped to within
in B to compute the displacement from B back to A. Thithree voxels of their starting locations, 96% to within two,
procedure causes a small rounding errors. This table shoavel 80% to within one.

(b)
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TABLE Il 2]

ERROR DISTANCE HISTOGRAM GENERATED BY COMPOSING THE TRANSFORMATION
OF A TO B wiTH B TO A FOR 128x 128x 100 VOXEL TRANSFORMATIONS

Distance AtoBto A Bto A toB 3
(voxels) [counts [percentage|counts Ipercentage
0 610046] 37.3 [485464] 29.6 [4]
1 766910f 84.1  {837036| 80.7
2 218616 974  {249705|  96.0
3 31213 | 993 |47057| 98.8 (5]
4 8510 999 |14776| 997
5 1822 100 3402 99.9
6 318 100 643 100
7 59 100 235 100 6]
8 6 100 63 100
9 0 100 19 100
[71
IV. CONCLUSIONS (8]

The experiments presented in this paper demonstrate tt[kﬁ
feasibility of finding diffeomorphic correspondences between
anatomies using high-dimensional transformations. Results
from mapping monkey and human data show the feasibili Yo
in both humans and animals for these techniques. A high-
dimensional volume transformation was required to accommo-
date complex neuroanatomical shape. Global transformatidh¥
provide a coarse correspondence between two anatomies [2it Institute of Medicine, “Mapping the brain and its functions: Integrating

fail to provide the local correspondence needed. Specifically, jt _ ; .
13] T. Greitz, C. Bohm, S. Holte, and L. Eriksson, “A computerized

was demonstrated that the high-dimensional 3-D fluid volume

transformation provide a more accurate assessment of the
anatomical shape than the 3-D sulcal map transformation [f]
small deformation linear elasticity solution.

Global transformations are computationally inexpensive and
the high-dimensional transformations are computationally ei!
pensive. Therefore, using the multiresolution approach reduces
the over all computational requirements which would be
required if of only a high-dimensional transformation is used®!
The high-resolution, macaque-monkey data demonstrates that
the complex cortical mantel can be mapped from one anatofy] M. E. Shenton, R. Kikinis, F. A. Jolesz, S. D. Pollak, M. LeMay, C.
to another if the resolution of the data permits.
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