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Volumetric Transformation of Brain Anatomy
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Abstract—This paper presents diffeomorphic transformations
of three-dimensional (3-D) anatomical image data of the macaque
occipital lobe and whole brain cryosection imagery and of deep
brain structures in human brains as imaged via magnetic reso-
nance imagery. These transformations are generated in a hierar-
chical manner, accommodating both global and local anatomical
detail. The initial low-dimensional registration is accomplished
by constraining the transformation to be in a low-dimensional
basis. The basis is defined by the Green’s function of the elasticity
operator placed at predefined locations in the anatomy and the
eigenfunctions of the elasticity operator. The high-dimensional
large deformations are vector fields generated via the mismatch
between the template and target-image volumes constrained to
be the solution of a Navier–Stokes fluid model. As part of
this procedure, the Jacobian of the transformation is tracked,
insuring the generation of diffeomorphisms. It is shown that
transformations constrained by quadratic regularization methods
such as the Laplacian, biharmonic, and linear elasticity models,
do not ensure that the transformation maintains topology and,
therefore, must only be used for coarse global registration.

Index Terms—Brain mapping, global shape models, medical
imaging, pattern theory.

I. INTRODUCTION

M ODERN neuroimaging methods allow anatomists to
provide exquisitely detailedin vivo information re-

garding the anatomical structure of individual brains. To
date, the interpretation of the data has been hindered by
the inability to expeditiously relate such information between
morphologically varying brains. The difficulty lies in two
areas. First images between differing anatomies must be reg-
istered. Second, even when registered, normal variation across
disparate anatomies makes pooling of interanatomical data
difficult, if not impossible.

For the past several years we have been involved in the
development of mathematical and computational software
tools for the generation of structural representations of brain
anatomy which accommodate normal neuroanatomical varia-
tion. As we have demonstrated [1]–[7], such representations
provide a structural understanding of the brain architecture,
invariant to the shape variability inherent to normal brain
anatomy. This is in a sense brain representationmodulo normal
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variation. To accomplish this, we use theglobal shape models
of Grenander [8] to represent the typical global structures
in the shape ensemble via the construction of templates,
and their variabilities by the definition of probabilistic
transformations applied to the templates. The transformations
form mathematical groups made up of translations, scales, and
rotations and are applied locally throughout the continuum of
the template coordinate system so that a rich family of shapes
may be generated with the global properties of the templates
maintained. Such an approach provides a representation of
normal neuroanatomies, which precisely specifies the global
anatomical relationships between structures as well as how
they can vary from one brain to another. The approach
taken herein complements the probabilistic atlas approach
developed in [9] and [10]. Our methods, however, focus on
probabilistic measures associated with the transformations of
the coordinate systems of the atlases. This is central to the
Grenander paradigm in the pattern theory [8]. From measures
of the variation of the coordinate system transformations,
estimates on the variations of image intensities at particular
locations can be defined.

Preserving geometrical properties and topology during
registration is a major thrust of our work. Such properties
correspond to topological properties of the transformation
such as continuity, differentiability, positive-definiteness
of the Jacobian, and others. To this end, we examine
diffeomorphic—continuous, one-to-one, onto, and differen-
tiable—transformations in this paper. Transformations that are
diffeomorphic maintain topology, guaranteeing that connected
subregions remain connected, neighborhood relationships
between structures are preserved, and surfaces are mapped
to surfaces. Preserving topology is important for synthesizing
individualized electronic atlases; the knowledge base of
the atlas may be transferred to the target anatomy through
the topology preserving transformation providing automatic
labeling and segmentation. If total volume of a nucleus,
ventricle, or cortical subregion are an important statistic
it can be generated automatically. Topology preserving
transformations that map the template to the target also can
be used to study the physical properties of the target anatomy,
such as mean shape and variation. Likewise, preserving
topology allows data from multiple individuals to be mapped
to a standard atlas coordinate space [11]. Registration to
an atlas removes individual anatomical variation and allows
information from many experiments to be combined and
associated with a single conical anatomy.

The class of diffeomorphic transformations limits regis-
tration of brain images to regions of brain anatomy with
equivalent topology. These regions typically include deep sub-
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cortical structures, such as the thalamus, caudate, ventricles,
etc. and even some of the major sulci. However, this may be
violated such as for various types of disease. Registration of
regions with different topology is an area of current research.

There has already been a vast body of work on
digital electronic atlases, multimodality image fusion and
registration. Digital atlases are currently available [12],
especially for colocalization of volume datasets, such as
those encountered with positron emission tomography
(PET)/single photon emission computed tomography
(SPECT), computed tomography (CT) and magnetic
resonance imaging (MRI) [13]–[16]. Suitable atlases support
neuromorphometric analyzes [17], with both colocalization
and neuromorphometric analysis requiring the availability of
volumetric image data with large numbers of voxel samples,
such as that provided by CT or MRI [9], [18]–[21].

The most straightforward methods of registration assume
that the images or tissues being matched are highly similar
for which the variability of only global course features are
accommodated via affine transformations [11], [21], [22]. We,
however, are interested in accounting for very local variability
across disparate anatomies, thereby requiring high-dimensional
transformations on the coordinate system, the dimension of
which are proportional to the number of voxels in the volume.
A number of investigators have taken the approach in which
the mapping is based on geometric features, such as landmarks
(points) [23], [9] and contours (lines) [24]–[30]. Alternatively,
others have investigated volume mapping which use the im-
age data directly to generate transformations throughout the
coordinate system of the template and target [14], [15], [31].
The voxel image data provide the matching forces throughout
the continuum. In our work (see [32]), both approaches are
combined via a composition of transformations. The transfor-
mations are of high dimension, applied as if the template were
a fluid, allowing for the examination of fine features within
the continuum of the templates and targets: e.g., cortical folds,
sulcal trajectories, deep nuclei, and ventricular volumes and
shapes. The transformations on the continuum are tracked and
forced to be diffeomorphisms so that all differential geometric
features can be mathematically characterized and measured.
On the one hand the 20 million parameter transformations
are rich enough to map the finest anatomical details; on the
other hand, they maintain topology allowing for semantic and
geometric features to be mapped. Others have investigated
decomposing two-dimensional (2-D) and 3-D nonrigid trans-
formations into separate one-dimensional (1-D) problems [33].
Although 1-D transformations are computationally efficient,
2-D and 3-D transformations constructed from decoupled 1-D
transformations still require the reinsertion of the diffeomor-
phic constraint upon their synthesis to three dimensions.

The paper is organized as follows. Section II describes the
coarse-to-fine approach used to transform the shape of an
electronic atlas so that it matches the shape of a specific
individual’s anatomy as imaged via cryosection and MR.
Continuum mechanical models based on linear elasticity and
fluidity are used to ensure that the high-dimensional trans-
formations preserve topology. These models are concatenated
together in the coarse-to-fine procedure for accommodating

global and local shape variation between image volumes.
Results mapping both 3-D monkey and human anatomical
image data are presented in Section III. The validity of the
mapping are evaluated by comparing the automatic segmenta-
tions generated by mapping the atlas to the target with hand
segmentations and directly by composing the forward and
inverse transformations.

II. TRANSFORMATION MODELS

A. Mathematical Preliminaries

Populations of anatomies are studied by constructing maps
from the population to a common coordinate system. For this,
we associate with the single coordinate system an atlas, or
template denoted , which is a set of -registered image
volumes defined on the coordinate system

corresponding to different interpretations of a single
underlying object of interest. For example, the imagescan
correspond to both sensor readings such as CT and MRI and
to logical data such as structure names and functions.

The target or individual in the population is characterized
via a study defined on consisting of -
characterizing data sets, or substudies. Each substudy is an
examination of the target brain tissue via a sensing modality
that is in the atlas. In general, the atlas has more modalities
than the study, because usually contains more in-
formation than , i.e., segmentation and labeling of structures.
The information in the atlas and target coordinate systems
are brought into correspondence by finding the transformation

registering the study with the template
Throughout it is assumed that is constructed

from a vector field on according to

(1)

with the vector field parameter-
izing the transformation of coordinate systems.

Registration is defined using distance measures be-
tween the transformed atlas and study which are derived from
the physics of the sensor. We have used Gaussian distance
measures which are appropriate for cryosection and MRI data
[34]–[37] and Poisson based distance measures which are
appropriate for PET and SPECT data [38]–[41] [emission
tomographs, charge-coupled device (CCD) cameras]. For the
data presented here the Gaussian distance for one modality
was used: In a Bayesian
framework, the distance measure formodalities is additive

assuming independence between
modalities conditioned on the coordinate transformation.
is the potential energy of the product of independent proba-
bility densities, the distance measures are specific to the
imaging modality , and the weights are associated with
each measurement modality.

To ensure diffeomorphic properties, the transformationis
estimated which minimizes the distance measure while
at the same time satisfyingdiffeomorphic constraints. These
diffeomorphic constraints are enforced on the transformation
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by constraining the transformation to satisfy the laws of contin-
uum mechanics [42]. The variational problem which is solved
is to find the maximum a-posteriori estimators associated with

where is the energy
representation of the regularization on the transformation.

B. Hierarchical 3-D Brain Mapping Protocol

Since 3-D brains are tremendously complex, we have con-
structed a hierarchical protocol which proceeds from course-
to-fine for the generation of the diffeomorphic maps. This
protocol has two fundamental pieces, the first poses the
registration problem in terms of a series expansion and the
second in terms of solving a partial differential equation (PDE)
on a spatial grid with dimension on the order of the image
lattice (number of voxels). The series expansion involves two
series, the first a series which is localized over the input land-
marks corresponding to the Green’s functions of the elasticity
operator and the second a global basis in sines and cosines
corresponding to eigenfunctions of the elasticity operator.

The landmark series expansion is based on a natural ex-
tension of Bookstein’s landmark work [23], [43] in which
corresponding points, lines, surfaces, and subvolumes in the
template and target are used to drive the deformation. Land-
marks can be identified manually or automatically. This step
provides an initial global or coarse registration bringing into
alignment the major subvolumes and areas of interest. The
volume basis series expansion is used to refine the landmark
series solution and differs from the landmark expansion in that
the volume data itself is used to drive the deformation. The vol-
ume basis expansion provides a coarse linear-elastic alignment
of the volume for regions in between landmarks. Fine local
alignment is accomplished by solving the registration problem
posed as the solution of a fluid partial differential equation on a
spatial lattice of displacement vectors. The fluid transformation
is composed with the small deformation series transformation
and may be viewed as using the series expansion solution
as its initial condition. We are currently extending the fluid
formulation so that it incorporates large deformation theory
into the landmark solution [44].

The registrations generated involve several steps organized
through three basic transformations which are composed,

The first transformation applies the affine
motions for choosing the best positioning of the template
and global scale; subsequent transformations increasing in
dimension are the landmark transformations, along with the
high-dimensional “small deformation elasticity” and “large
deformation fluid transformation.” During these transforma-
tions the dimension of the vector fields are increased. Initially
the affine motions are of dimension 12, increasing to the
order of 500 landmarks corresponding to the anterior and
posterior commissure lines (Tailarach-like orientation) and the
extrenal curves corresponding to the fundi, and finally the
PDE-based transformation consisting of 10–10 dimensions.
We are currently extending the landmark based transformation
based on small deformation energetics to the fluid formulation
to incorporate large deformation diffeomorphic transformation
for image registration [44].

1) Landmark Transformation Model: Generating Initial Con-
ditions: The first step in the coarse-to-fine procedure trans-
forms the template into the shape of the target by registering
a set of landmarks in the template with a corresponding set
of landmarks in the target. The transformation is constrained
by a generalized linear differential operatorwhich can be
adjusted to correspond to Laplacian, biharmonic (thin-plate
splines), linear elasticity, and other continuum mechanical
transformation models.

The affine group (semi-direct product of the
translation and generalized linear group) is studied separately
from the landmark and image matching transformations. The
template is defined to carry the affine motions with it and
thus is an orbit, i.e., the equivalence class under the affine
group. The affine motion , which is specified by the 33
invertible matrix and 3 1 translation vector, is estimated
which chooses from the template orbit the instance which
is closest to the target. The affine motion accommodates the
global scale, rotation, and translation, while the other landmark
motions match the globally scaled and oriented template to
the target. Throughout, we interpret the maps and elements as
vectors in , so that matrix multiplication is understood in
the usual sense. The affine motion and local vector field
transformation are estimated jointly from the
landmarks.

Define to be the set of landmarks
in the template, identified with varying degrees of accuracy.
Associate with each landmark in the template a point
identified in the target. Assume that the identification of the
points is noisy and is modeled by

, where are Gaussian distributed
with a 3 3 covariance The covariance represents the
spatial variability associated with identifying the landmarks in
the data. For the results presented in this paper ,
where is the 3 3 identity matrix.

The transformation is estimated using the landmark infor-
mation according to the Bayesian optimization [32], [44]

(2)

For all of the landmark work, we take
with The solution becomes

where is defined by the matrix shown at the bottom of
the next page, are the weights vectors,
and The optimal weights and
the affine motion satisfies the system of linear equations

(3)

(4)
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The parameters and are determined by solving
the system of linear equations in (3), (4), accomplished by
inverting the system matrix.

The procedure to register corresponding curves such as sulci
in the template and target is done in a similar manner. Curves
are drawn in the data and approximated using a piecewise
linear model, assumed to have equal number of equally spaced
nodes The nodes of the template
curve are then matched to the corresponding nodes of the target
curve.

2) Volume Basis Transformation Model:The second step
uses a volume basis transformation model [2], [3], in which
the coordinate system of the atlas is transformed as an elastic
solid so that it matches the shape of the study. The stress or
restoring force grows proportionately to the strain or deforma-
tion distance away from the template. One limitation of this
model is that it is only valid for small linear deformations.
Defining the transformation via the vector field according to

, the strain field for linear elasticity under
the small deformation assumption corresponds to energetics of
the form where , and

We use thebendingboundary conditions

(5)

The eigenvectors for these boundary conditions are

(6)

with eigenvalues and
and normalizing coef-

ficients
and

We have also investigated other boundary conditions for the
model corresponding to fixed, sliding, bending, and periodic
boundary conditions [45].

The variational problem becomes

(7)

where the displacement fieldis constrained to be of the form

(8)

with the variables and fixed from the landmark
transformation. is a constant multiplying the distance mea-
sure and is used to adjust relative weight of this term
with the energetic constraint terms. The basis functions
are the eigenelements of the operator correspond-
ing to linear elasticity. Note that various operators can be
used for the landmark and the volume basis transformation
models. We also note that (8) is valid as a small deformation
approximation. Therefore, it is equivalent to composing the
first transformation of landmarks with the additive elasticity
basis

The optimization is accomplished by solving a sequence of
optimization problems from coarse to fine scale via estimation
of the basis coefficients This is analogous to multigrid
methods, but here the notion of refinement from coarse to fine
is accomplished by increasing the number of basis compo-
nents. As the number of basis functions is increased, smaller
and smaller variabilities between the template and target are
accommodated. The basis coefficients are determined by
gradient decent, where

(9)

with a fixed step size.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Three–dimensional transformation of macaque monkey brain hemispheres: 3-D surface rendering of the left hemisphere of the (a) template,
(b) the transformed template, and (c) the target image volumes. Cryosection data slice 26 from the (d) template, (e) transformed template, and (f)
the target image volumes.

3) The Viscous Fluid Transformation Model:The viscous
fluid transformation model [7] accommodates large-distance,
nonlinear deformations of the template. For this, an aux-
iliary random field is introduced, termed the velocity field

which defines the strain vector field
according to

(10)

for
For viscous fluids, the stress grows proportionately to the

rate of strain and forces the mapping to be continuous,
1-1, and onto [7]. Large distance strain distance deformations
will occur as long as the rate of strain during the mapping
is smooth. The PDE corresponding to the solution of the
variational problem for the fluid formulation is given by

(11)

with the boundary conditions , , and .
The coefficients and are viscosity constants.

The PDE in (11) is nonlinear in and is solved
via linear PDE’s in for fixed times where

and The linear PDE’s
corresponds to (11) with and fixed and are solved in
sequence starting at and These PDE’s
are solved numerically for the instantaneous velocityusing

successive overrelaxation (SOR) [46] with checkerboard up-
date at each fixed time step. The discrete version of (10) is
given by

(12)

Automatic regridding is performed as in [7] and [47], by prop-
agating templates as the nonlinear transformations evaluated
on the finite spatial lattice become singular. New templates
are propagated when the Jacobian of the transformation of the
current template drops below 0.5.

C. Small Versus Large Deformation Models

Due to the complex shape of anatomical structures, it is
important that global structures are registered before local
structures to avoid local mismatches. With this in mind, the
hierarchical mapping protocol progresses from small to large
deformation models. The small deformation constraints used
in the landmark and volume basis models are only valid for
small deformations. Small deformation models do not enforce
that the transformation maintains topology for locally large,
nonlinear deformations and, hence, are only used to determine
nonrigid global correspondence. In order to determine the local
correspondence, the large-deformation, viscous fluid model is
used which is valid for locally large, nonlinear deformations
[7].
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The following proposition states formally that small defor-
mation models such as the Laplacian and ,
biharmonic and , and linear elasticity models

and do not enforce that transformations
maintain topology for locally large, nonlinear deformations.
Probabilistic language is used for rigor and because of the
duality between minimizing cost functions and maximizing
probability.

Proposition 1: Consider transformations of the form
for

where are the
eigenfunctions of the linear operator and

with cyclic boundary conditions
and are positive constants. There exists a set of basis
coefficients with positive Gaussian measure
such that the Jacobian of is negative for a set of with
positive Lebesgue measure.

For brevity, we only prove the 1-D case. The formal
proof for higher dimensions is given in technical reports
[48], [45]. For , the operator has the form

The operator will have eigenfunc-
tions of the form and For simplicity, we
proceed with only the case. The Jacobian
of this transformation is given by

We now look at Clearly,
there is a set with positive Gaussian measure, such
that the Jacobian of at is negative, i.e., there
is a set with positive Gaussian measure that satisfies

where are constants.
The set of for which has positive Lebesgue
measure because is a continuous function of i.e., there
exists an epsilon neighborhood about for which

Proposition 1 relates to the regularization functions in (2)
and (7) in that the minimizer of is equivalent to
the maximuma priori estimate of given

III. RESULTS

A. Example of Hierarchical Mapping Protocol

To illustrate the overall method of solution, Fig. 1 shows re-
sults using cryosectioned data collected from macaque monkey
brain hemispheres. The mapping strategy proceeds by initially
matching global structures followed by the finest detailed
mapping of the local structures. The final transformation was
generated by concatenating a sulcal line transformation, with a
low-frequency, linear-elastic volume basis transformation, fol-
lowed by a fluid transformation. Eight sulcal lines were defined
in the template and target using VoxelView corresponding to
major brain sulci. Each line was parameterized by an ordered
set of points. These points (84 total) were matched using (2) to
generate the initial global registration. The landmark transfor-
mation was refined using an elastic transformation constrained
to the first five harmonics. Constraining the elastic transforma-
tion to the first five harmonics generated a transformation with

Fig. 2. Plot of the squared error (�103) versus iteration for the transforma-
tions of individual A to B and B to A.

(a)

(b)

Fig. 3. Photograph of the right hemisphere of a macaque monkey used for
the (a) template and (b) target. Arrows show the cuts that were made to
remove part of the visual cortex.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 4. Parasagittal cryosection occipital cortex slices from the transformation of one 3-D macaque monkey occipital lobe to another: The columns from
left-to-right correspond to slices 23, 37, 52, and 61, respectively. (a)–(d) template, (e)–(h) deformed template, (i)–(l) target data set, and (m)–(p) thex&y
projection of the displacement field applied to a 2-D grid.

648 basis coefficients (parameters). This solution was refined
by solving the PDE 10, 11 with 500 iterations. The transformed
template is depicted in the right column of Fig. 1. This
transformation was parameterized by one displacement vector
and velocity vector at each voxel location which translates into
5.8 10 parameters for the fluid transformation. Notice that
this multiresolution procedure generate a transformation image
volume that matched both the target macaque brain surface
topography and its internal structure. As proven in [7] these
maps from the fluid PDE are diffeomorphisms.

The PDE was implemented on the massively parallel
DECmpp 12000Sx/Model 200 (MasPar), a 128128 mesh-
connected single-instruction-multiple-data (SIMD) architec-
ture which is well suited for solving partial differential

equations such as (11). The 3-D fluid transformation takes
roughly 2 h for a 128 128 100 voxel data set, 100 SOR
iterations, and 250 time steps [47].

The solution of the nonlinear fluid PDE (11) is iterative.
Fig. 2 shows a plot of the squared difference of the intensities
of the deformed template and the target versus number of
iterations for the transformation of two 128128 100 voxel
data sets. The number of iterations used to compute the
3-D fluid transformation was selected to give a good match
between the template and target images, i.e. small squared
error. Notice that most of the registration occurs in the first
100 iterations of the total 250 iterations generated. This
suggests that computation time can be reduced by accepting
less precision.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 5. Intermediate results of the 3-D macaque monkey occipital lobe transformation: Slice 37 from (a) initial template, (b) template after the 312 parameter
sulcal transformation, (c) template after the 3.4�107 parameter fluid transformation, and (d) the target volume. (e)–(g) Show the magnitude difference
images between the target slice and the template after each stage of the transformation.

B. Volume Segmentations and Geometry
Generated from Smooth Maps

Generation of the diffeomorphic maps supports the com-
putation of meaningful differential geometric features, such
as volumes and surfaces to be preserved and measured. We
demonstrate this by taking a more careful look at the neocortex
in a subsection consisting of the occipital subvolume of the
full macaque brain. Fig. 3 shows a photograph of the macaque
cortex used for the atlas [Fig 3(a)] and the target [Fig 3(b)] with
arrows denoting the block of brain tissue used. This digital
imagery of the occipital lobe was generated in D. Van Essen’s
laboratory of the Department of Anatomy and Neurobiology
at Washington University, St. Louis, MO, by block microtome
cryosectioning and CCD digitization of 100-m sections.
The ice surrounding the brain tissue was removed by hand
tracing and masking of the brain exterior. The dimension
of the template and target data sets were 320240 64
and 320 240 54, respectively. These volumes were sym-
metrically padded with zeros (the background intensity) to
generate equal 320240 74 volumes. The target volume
was preprocessed by histogram matching its histogram to that
of the template volume.

Global registration of the two data sets was accomplished
by matching nine major, hand-labeled sulci in the atlas and
the target. This transformation was refined to accommodate
local variation using the 3-D viscous fluid model to produce
the final transformation. The sulcal line information provides
initial conditions to the fluid solution; for the fluid model
only the volume data provides the driving function. Therefore,
hand-labeled sulcal lines could be drawn fairly quickly. The
coefficients used for this experiment in (11) were
and

Fig. 4 shows four slices of the visual occipital lobe of
cortex of the template before and after the 3-D hierarchical
transformation and the target data set. The bottom row of this
figure shows the transformation applied to a rectangular grid.1

Notice how similar these images appear despite the great initial
difference between the template and target. We have chosen
these four slices to illustrate major sites of differences in
anatomy. Notice how many of them are topologically different
when viewed in 2-D, but since the algorithm works completely
in 3-D, it moves the folds and surfaces around so as to make
them match.

As the template volume deforms in three dimensions into
the shape of the target volume, each arbitrary cut through the
deforming template begins to look more and more like the
corresponding cut in the target volume. Fig. 5 illustrates this
improvement as the template deforms into the shape of the
target volume after each stage of the transformation procedure
for slice 37 in the target anatomy. Slice 37 of the template is
initially very different from the target slice 37 as illustrated by
the magnitude difference image. The sulcal line transformation
accommodates the global nonrigid alignment as shown by
slice 37 of the template after the sulcal line transformed and
the reduced magnitude difference image. Finally, the fluid
transformation accommodates the local shape differences and
has the smallest difference image.

The automatic segmentation of the target data set was
generated by mapping the atlas segmentation to the tar-
get coordinate system. Fig. 6 shows sections from the atlas
[Fig. 6(a)–(d)], the automatic segmentation of the target data
set [Fig. 6(e)–(h)], and an expert hand segmentation of the

1The deformed grid images were generated by projecting the transformation
for these slices to thex-y plane producing a 2-D transformation. This 2-D
transformation was then applied to a 2-D image of a rectangular grid.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 6. Automated 3-D segmentation of occipital cortex volumes. The columns from left-to-right correspond to slices 23, 37, 52, and 61, respectively. (a)–(d)
template gray/white matter hand segmentation, (e)–(h) automatic segmentation of the target occipital lobe generated by transforming the templatesegmentation,
and (i)–(l) hand segmentation of the target data set, (m)–(p) gray/white matter surface of the deformed atlas overlaid on the study cryosectioned data.

TABLE I
SEGMENTATION CORRESPONDENCE OFINTERIOR POINTS (SEGMENTATION LABELS

�1 VOXEL FROM A BOUNDARY) FOR THE3-D MACAQUE OCCIPITAL LOBE STUDY

target data set [Fig. 6(i)–(l)]. Comparison of the Fig. 6(e)–(h)
and Fig. 6(i)–(l) shows that the automatic segmentation is
close in shape to the hand segmentation. This is further
supported by [Fig. 6(m)–(p)] which shows the gray/white
matter surface superimposed on the target data set.

It has been shown that segmentation reliability for experts
is only valid for points interior to object boundaries [49],
[50] (see Fig. 11). To quantify precision of the segmentation
protocol, we compute the segmentation correspondence for
points interior to object boundaries. Interior points are defined
as a template segmentation labels that are one voxel from the
object boundary. The segmentation correspondence for interior
points is the percentage of correctly transformed interior points
to the total number of interior points for each segmented
object. This measure takes into account the uncertain nature of
segmentation boundaries by using segmentation labels interior
to objects.

Table I shows the interior point correspondence for the
automatic segmentation of the visual cortex. The left column
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Three-dimensional rendering of macaque monkey occipital lobe transformation: Volume rendering cut at slice 53 of the (a) template, (b) target, and
(c) deformed template. Three-dimensional surface renderings of the gray/white matter surface of the (d) template, (e) target, and (f) deformed template.

shows the correspondence before transformation, the middle
column shows the correspondence after the 3-D sulcal map
solution (the nonrigid global alignment), and the right column
shows the correspondence after the fluid solution (the global
and local alignment). The top row of the Table I demonstrates
the background correspondence of the template and study
increased from 95.2–99.9 under the transformation. This im-
plies that the deformed template and study volumes only vary
slightly in their over all shapes to give the 99.9 correspondence
of the background. Correspondence for the gray matter and
white matter regions increased from about 35–50% initially
to about 65–75% after the sulcal transformation to nearly
90–95% after the fluid transformation.

Table I also demonstrates the importance of the high-
dimensional mapping solution. The middle column shows
the alignment for a 200-parameter transformation, which
includes the 12-dimensional affine transformation. Even 200
dimensions are not sufficient for providing precise local
alignment of the cortical geography. The right column
demonstrates the added accuracy of the resulting high-
dimensional maps.

We have emphasized that the maps which are generated
are diffeomorphic, implying all differential geometric features
are maintained. Fig. 7 shows the 3-D volume rendering of the
template (left), the target (middle), and the final transformation
of the template (right). The bottom row shows views of the
gray/white matter neocortical surface being mapped from the
template macaque (left column) occipital cortex volume to the
target (middle column). The transformation of the template
surface is shown in the right column. The right column shows
the result of mapping the full occipital cortex volume from the

template to the target, and then rendering the surface in the
cortical subvolume under the transformation.

C. Results for Human Brain Mapping: Hippocampus Matching

We have developed the algorithm to accommodate not only
cryosection data, but also MRI data such as spin density, T1,
T2, and MPRAGE sequences. We have mapped several 3-
D whole brains as imaged via MRI with the intention of
studying the shape and volume of deep structures such as
the hippocampus. Shown in Fig. 8 are the results of mapping
an entire MPRAGE volume from a single template to two
different individual targets. The middle column shows the two
different targets (top and bottom rows). The right panel shows
the template mapped to the target. This solution involved
the computation of 128 128 100 3 5 10 parameters
representing the coordinate system transformation. We have
surface rendered the volume data so that the faces are apparent.
Notice the phenomenal similarity of the template and target
(compare middle and right panels).

We emphasize that the solution does not involve mapping
the surfaces alone. Rather, the mapping is based on the
entire volume of the heads, which of course carries the
surfaces along with internal structures. Our purpose is to
study the shape of deep structures such as the hippocampus.
To emphasize this, Fig. 9 shows two sections from the 3-
D template at its original resolution 11 1.25 mm (left
column) and at its interpolated resolution of 0.25mm ,
focusing in on the hippocampus. The segmentation of the
template hippocampus was performed by a trained expert at
0.125 mm resolution requiring upwards of 20 h to generate.



874 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 16, NO. 6, DECEMBER 1997

(a) (b) (c)

(d) (e) (f)

Fig. 8. Three-dimensional MRI-MPRAGE head matching. Surface render-
ing of the MPRAGE (a) template, (b) target data sets, and (c) 3-D fluid
deformation of the template to the target; (d)–(f) same as (a)–(c) for second
individual.

This segmentation has a smooth surface so that when the
template transformation is applied to the segmentation, it
generates a smooth segmentation.

The first step was to perform a landmark transformation
on the entire MRI volume (256 256 128 voxel volume,
with voxel dimension 1 1 1.25 mm ). The landmarks were
selected to give a coarse alignment of the head while giving a
good match in the subregion containing the hippocampus. The
landmarks used consisted of the anterior commissure (AC) and
posterior commissure (PC), the front and back of the brain
on the line defined by the AC-PC line, the top, bottom, left,
and right of the brain in the plane perpendicular to the AC-
PC line containing PC, the head and tail of the hippocampus,
and the top, bottom, left, and right of the hippocampus in the
plane perpendicular to the hippocampus head and tail halfway
between the head and tail. A 128128 65 voxel region
at 0.25 mm was extracted from the landmark transformed
template. The subvolume was generated by transforming the
template at 0.25mm resolution and not by trilinearly inter-
polating the 1 1 1.25 mm deformed image volume. The
template subvolume was fluidly transformed into the target
subvolume using 300 iterations of the fluid algorithm. Fig. 10
shows two slices from the original MRI target hippocampus
volume (left column), a superimposed segmentation generated
by deforming the template to the target (middle-left column),
a superimposed hand segmentation (middle-right column), and
a difference image of the two segmentations. Notice that all

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Sagittal cross section of MRI hippocampus template: (a) and (b) two
slices of the MRI template where the hippocampus subvolume is shown in the
red box; (c) and (d) the hippocampus subregion from (a) and (b) interpolated
to 0.253 mm3 resolution, respectively; (e) and (f) same as (c) and (d) with
hippocampus segmentation superimposed, blue corresponds to everything but
hippocampus.

of the error in the segmentation occurs at the edges. Fig. 11
shows that the error in 2-D segmentation of a hippocampus
occurs at the boundaries [49].

Table II shows a comparison between the automatic and
manual methods for segmenting the hippocampus in two
normal human subjects. The repeated automatic segmentations
were generated by placing new landmarks in the target image
volume. Percent differences were computed by taking twice
the difference between two numbers and dividing by the sum
of the two numbers. Notice that there is agreement between
repeated manual segmentations and the repeated automatic
segmentations. These results are significant considering that
the hippocampus is a difficult structure to segment because
small errors in segmenting the boundary cause large relative
errors in the over all volume [50].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. Comparison of automatic and hand segmentation of hippocampus: Two slices from 0.253 mm3 resolution target image subvolume (a) and (e)
original, (b) and (f) original with deformed template segmentation superimposed, (c) and (g) original with hand segmentation superimposed, and (d)and
(h) difference image between the automatic and hand segmentations.

TABLE II
COMPARISON OF AUTOMATIC AND MANUAL METHODS FOR HIPPOCAMPAL SEGMENTATION

Precision of the algorithms was evaluated by composing the
forward and backward transformations together and measuring
the deviation from the identity transformation (see Table III).
If the forward and backward transformations are inverses of
one another, the composition transformation would be the
identity transformation. Two transformations, and ,
were generated by transforming MRI data set A to B and
B to A, respectively. The MRI data used in this experiment
were originally 256 256 128 voxel volumes with voxel
dimension 1 1 1.25 mm . These volumes were trilinearly
interpolated to have voxel dimension 2 mmand symmet-
rically zero padded to form a volume of 128128 100
voxels. The transformations were generated by concatenating
an elastic transformation with the fluid transformation. The
elastic transformation was constrained to have harmonics up to

and the fluid transformation was run for 250 iterations.
Table III was constructed by projecting each displacement
vector from A to B and then from B to A. Each displacement
vector from A to B was rounded to the nearest voxel location
in B to compute the displacement from B back to A. This
procedure causes a small rounding errors. This table shows

(a) (b)

Fig. 11. (a) The average of four independent segmentations of a 2-D
image of a hippocampus and (b) the superposition the contours of all four
segmentations. Notice that most of the error in segmentation occurs at the
boundaries. Figure reproduced from Halleret al., 1996.

that the transformations and are almost inverses of
each other. Almost 100% of the voxels are mapped to within
three voxels of their starting locations, 96% to within two,
and 80% to within one.
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TABLE III
ERRORDISTANCE HISTOGRAM GENERATED BY COMPOSING THETRANSFORMATION

OF A TO B WITH B TO A FOR 128�128�100 VOXEL TRANSFORMATIONS

IV. CONCLUSIONS

The experiments presented in this paper demonstrate the
feasibility of finding diffeomorphic correspondences between
anatomies using high-dimensional transformations. Results
from mapping monkey and human data show the feasibility
in both humans and animals for these techniques. A high-
dimensional volume transformation was required to accommo-
date complex neuroanatomical shape. Global transformations
provide a coarse correspondence between two anatomies but
fail to provide the local correspondence needed. Specifically, it
was demonstrated that the high-dimensional 3-D fluid volume
transformation provide a more accurate assessment of the
anatomical shape than the 3-D sulcal map transformation or
small deformation linear elasticity solution.

Global transformations are computationally inexpensive and
the high-dimensional transformations are computationally ex-
pensive. Therefore, using the multiresolution approach reduces
the over all computational requirements which would be
required if of only a high-dimensional transformation is used.
The high-resolution, macaque-monkey data demonstrates that
the complex cortical mantel can be mapped from one anatomy
to another if the resolution of the data permits.
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